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Bifurcations of the dark soliton and polarization domain walls in nonlinear dispersive media
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A bifurcation analysis of the coupled nonlinear Schrédinger equations that govern light propagation
in Kerr media reveals the existence of a novel type of vector dark solitary waves. These solutions consist
of a localized structure separating two uniform background waves of the same amplitude but opposite
circular polarizations and constitute therefore polarization domain walls.

PACS number(s): 42.81.Dp, 42.81.Gs, 03.40.Kf

In the context of optics the nonlinear Schrodinger
(NLS) equation describes one-dimensional light propaga-
tion in dispersive Kerr media such as single-mode optical
fibers. The fundamental bright soliton solution to this in-
tegrable equation [1] represents an ultrashort light pulse
which propagates without distortion in the anomalous re-
gime of group velocity dispersion [2]. In the case of nor-
mal group velocity dispersion the NLS equation possesses
dark soliton solution which consists of a localized struc-
ture separating two uniform background waves of identi-
cal amplitude but of different phases [3,4]. In the spatial
domain, the NLS equation also describes nonlinear prop-
agation of two-dimensional (2D) cw laser beams in
diffractive Kerr materials [1]. In this context, the bright
soliton occurs in self-focusing media and consists of a
self-guided laser beam whose transverse envelope is the
fundamental guided mode of the waveguide it induces
through the nonlinearity [5], whereas a dark soliton beam
is the second mode at cutoff of the waveguide it induces
in a self-defocusing Kerr medium [5].

Being derived in the scalar approximation of the elec-
tromagnetic field, the NLS equation only describes light
pulses or 2D laser beams with a uniform and constant po-
larization. However, in practice the polarization com-
ponents of the field constitute two interdependent optical
modes subject to important linear and nonlinear interac-
tions (see, e.g., the review paper, Ref. [6]). In the pres-
ence of more than one optical mode the propagation of
light in dispersive or diffractive Kerr media is described
by a set of coupled NLS equations.

Coupled NLS equations describe phenomena of com-
mon occurrence in nonlinear optics [7] as well as in plas-
ma physics [8] where their study revealed an extremely
rich spectrum of complex behaviors. In nonlinear optics
special attention has been paid to polarized soliton in-
teraction in birefringent materials where the interplay of
linear and nonlinear coupling leads to intriguing phenom-
ena. In particular, it was shown in the anomalous disper-
sion regime that solitons belonging to two polarization
modes may form a stationary bound state (vector solitary
wave) [9,10]. This type of solutions to the coupled NLS
equations was later analyzed in terms of bifurcations of
polarized bright NLS solitons [11,12]. Several studies
have also been devoted to the problem of bright and dark
soliton pairing considering both dispersion regimes (see,
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e.g., Refs. [13,14]). In a recent work, Kivshar and Tu-
ritsyn showed the existence of a new type of vector dark
solitary waves in the normal dispersion regime [15].
These solitary waves are bound states of two gray solitons
of different amplitudes and orthogonal polarizations.

The purpose of this paper is to analyze hitherto un-
recognized bifurcations of the coupled NLS equations
and to present a novel class of dark vector solitary waves.
We show analytically and numerically that these new sol-
itary waves constitute the limiting states of branches of
solutions which bifurcate from the circularly polarized
fundamental NLS dark soliton. They consist of localized
structures separating two circularly polarized uniform
background waves of the same amplitude but opposite
handedness. They can therefore be viewed as polariza-
tion domain walls.

In normalized units the circular polarization com-
ponents of the field propagating in an isotropic Kerr
medium are given by the coupled NLS equations (see,
e.g., Ref. [15])

2
ig—q—lg—U+(|U|2+afV|2)U=O , (la)
3z 2 3&?
Qv _ 13y 2 2y =
5 T2 8 +([V+olUHV =0, (1b)

where U(z,£) and V(z,£) are the envelopes of both polar-
ization components and o is the cross-phase modulation
(CPM) coefficient defined as o=(1+B)/(1—B) with
B =x1, /X1 where x{3}; is the nonlinear susceptibility
tensor of the material [16]. The coordinate § is either the
time coordinate in a reference frame traveling at the
group velocity of light (temporal domain) or the trans-
verse spatial coordinate of a 2D beam (spatial domain).
Note that according to the sign of the second derivative
in £ in Eq. (1), we restrict our developments to the cases
of pulse propagation in the normal dispersion regime
(with positive Kerr nonlinearity) and 2D beam propaga-
tion in self-defocusing media.

Equation (1) admits as solution the circularly polarized
dark soliton

Ul(z,§)=Vatanh(Vag) expliaz), V(z,E)=0. (2)
In the following we will study bifurcations of this simple

and well-known solution. Before doing so, it is con-
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venient to investigate its stability by means of a standard
linear stability analysis. To this end we introduce the an-
satz

Ul(z,£)=[Vatanh(Vaé)expliaz)+ul, V(z,€)=v (3

where u and v are the linear perturbations in both polar-
ization components. Substituting Eq. (3) into Eq. (1)
leads to two decoupled linear equations in u and v,

du 1 % 2/

Ou _0u_ v *)=

5 "2 o8 au +atanh (Va&)2u +u*)=0, (4a)
2 _

ii—lg—v+aa tanh®(Va&) =0 . (4b)

9z 2 &

The independence of # and v makes the stability analysis
very simple. Equation (4a) is nothing but the equation of
the linear stability analysis of the scalar dark soliton
[17,18]. The result of this analysis is well known; it mere-
ly shows that the scalar dark soliton is unconditionally
stable. As a consequence, only Eq. (4b), i.e., the presence
of the second polarization component, could lead to the
instability of the dark soliton. The stability is investigat-
ed by introducing the usual ansatz v =y (&)exp(Az),
where A is the growth rate of the arbitrary initial linear
perturbation y (§). This leads to the equation

1y —oatanh®(Vag)y =ily , (5)

where the dot denotes derivative with respect to . This
eigenvalue equation is well known in optical waveguide
theory; it is the modal equation of the sech? index profile
planar waveguide [19]. The complex number iA
represents the propagation constant of a given mode, say
B=—iA. The propagation constant B associated with
any bound function y(§) (i.e., either guided or radiation
modes) is real and positive [19]. This means that all the
eigenvalues of Eq. (4b) have a zero imaginary part,
Re(A)=0. In other words, the linear perturbation
growth rate is always zero. Such a result indicates that
the circularly polarized dark soliton is neutrally stable
with respect to a perturbation of its polarization state. A
perturbation in ¥ does not grow or decay and propagates
with the dark soliton in U. This behavior is a direct
consequence of the energy conservation law of Eq. (1b),
ie, d,[ [T2|VI*dg]=0.

The conclusion of this linear stability analysis can be
easily interpreted by means of optical waveguide theory.
A spatial dark soliton in the field U induces a waveguide
for the field ¥ (through CPM) and any initial distribution
of the field V of arbitrarily small amplitude can be
decomposed into the guided and radiation modes of this
waveguide. These modes propagate along z without loss,
which corresponds to the neutral stability of the circular-
ly polarized dark soliton. Of course, only the guided
modes in V propagate along the axis of the dark soliton in
U and are liable to form a bound state of both polariza-
tions. If the initial perturbation is such that only one
guided mode is excited, the resulting polarization bound
state is stationary. Note that theoretical and experimen-
tal studies of CPM-induced waveguiding have already
been reported in the literature in the case of beams of

different frequencies (see, e.g., [20,21]).

From this reasoning we anticipate that when the power
in the guided mode V is increased into the nonlinear re-
gime, the bound state can still exist at the expense of a
reshaping of the profile of the dark soliton in U. The re-
sulting bound states would therefore constitute a new
family of vector solitary waves which branches from the
circularly polarized dark soliton solution given in Eq. (2).
The branching point corresponds to the linear regime of
the guided mode in V. For each guided mode of the
CPM-induced waveguide we can expect a branching bi-
furcation from the circularly polarized dark NLS soliton.

Being composed of mutually trapped waveguide
modes, the new solitary-wave solutions have the form

U(z,€)=u(§)expliaz) ,

V(z,E)=v (&) expliBz) ,

where the envelopes u,v and the corresponding propaga-
tion constants a,f3 ar¢ real. Substituting these forms of U
and V into Eq. (1) leads to a set of coupled ordinary
differential equations

(6)

Lii+au —u’—ov*u=0, (7a)
Li+Bv —vi—ou?v=0. (7b)

Equation (7) is the equation of motion in the (u,v) plane
of a unit mass in the potential

V(u,v)=au’+pv*—Lu*+v*)—ou®?. (8)

The solitary-wave solutions to Eq. (7) correspond to the
separatrix trajectories of this potential. It is easy to see
from Eq. (8) that V possesses four maxima on the u and v
axes. The separatrices that connect the pairs of opposite
maxima correspond to the circularly polarized NLS dark
solitons. These solutions are

u =Vatanh(Vag), v=0, (9a)
u =0, v=VBtanh(VBE) . (9b)

In order to study the bifurcations of the circularly polar-
ized soliton we follow the procedure of Refs. [11,12]. Let
us consider the solution of Eq. (7) as a soliton (9a) plus a
small perturbation, that is,

u =Vatanh(Vaé)+ex , (10a)
(10b)

It is easy to verify from Eq. (7) that the linear term in € in
Eq. (10a) is zero. Substituting Eq. (10) into Eq. (7) we ob-
tain, to the leading order, two decoupled equations in x
and y. The equation in y is

%,'v'+By—0atanh2(1/a§)y =0. (11

v=c¢gy .

The solutions to this linear eigenvalue problem are well
known in optical waveguide theory since it constitutes
the modal equation of the sech? index profile planar
waveguide [19]. Because the opposite maxima corre-
sponding to the separatrices of YV are on the u and v axes,
we must restrict this eigenvalue problem to the solutions
y (&) that decay at £=%+ . Choosing the value o =2
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which corresponds to the nonlinearity of silica fibers, we
then find two solutions (corresponding to the two guided
modes of the CPM-induced waveguide) [19]

yo=sechv(\/5§) at B=p,=0.78a ,
y; =P ¥[tanh(Vag)] at B=fB,=1.84a ,

(12a)
(12b)

where P is the Legendre function of the first kind and
v=1.56. Equation (12a) reveals the existence of a bifur-
cation at f=p;,=0.78a. This bifurcation corresponds to
a branch of bound solitary-wave solutions u,v in which v
is a symmetric function, it is then characterized by a
change of symmetry in the total field (u being an antisym-
metric function). Equation (12a) represents the funda-
mental mode of the waveguide seen by the wave V in the
linear regime and f3; is its propagation constant. The as-
sociated bifurcation branch will be found for values of 8
corresponding to an increase in the power of V. These
solutions can easily be calculated numerically from Eq.
(7) using a standard shooting method. Their symmetry is
such that © =0 on the v axis (u =0); it is therefore con-
venient to choose the value of v on this axis, say v, as the
shooting parameter (the value of # is then found from the
energy conservation law of the unit mass motion). Figure
1 shows the evolution of the separatrices, as 8 tends from
By to a, and the corresponding bifurcation diagram.
Note that Eq. (7) can be normalized with respect to «a,
and in the following we can set a equal to unity without
loss of generality. In Fig. 2 we plotted the envelopes of
the polarization components u (£) and v (&) that corre-
spond to this new bifurcation branch. We see that as 8
increases from f, a pulse grows in the component v
around the origin; in the same region, the slope of wave u
decreases. When f3 approaches «, two pairs of bound
kink waves are formed, separating regions of orthogonal
circular polarization states (i.e., regions in which either U
or Vis zero). As 3 tends to a the distance between these
localized structures increases indefinitely and the pairs of
bound kink waves appear as being independent localized
structures of the field. In other words, they constitute
vector solitary waves of the dark type (nonvanishing
boundary conditions) separating domains of orthogonal
polarizations. The existence of such coupled kink waves
can be easily understood from the analysis of the poten-
tial V.

0.99

| 0.6 B,

(b)

FIG. 1. (a) Separatrix trajectories for different values of 8
(and a=1). These values are indicated on the curves. (b) The
corresponding bifurcation diagram v,(f). Note that the thick
line on the axis v, =0 represents the branch of the circularly po-
larized NLS soliton.
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FIG. 2. Bound solitary-wave envelopes u and v correspond-
ing to the bifurcation branch of Fig. 1. Curves are given for
different values of e=a—f, (a) £e=0.2, (b) €=0.05, (c) e=10"73,
(d)e=10""%

Before doing the analysis of these localized structures
let us consider the stability of the solutions of the new bi-
furcation branch illustrated in Figs. 1 and 2. First note
that the bifurcation does not affect the stability of the
branch of the circularly polarized dark soliton. As we
have seen above, the dark soliton is always neutrally
stable with respect to perturbations of its polarization
state. Since we do not have analytical expressions for the
new vector solitary waves, the stability of the second
branch must be investigated numerically. We have per-
formed numerical simulations of the propagation equa-
tion [Eq. (1)] with the solitary waves of Fig. 2 as initial
conditions. We verified their stability with respect to
several types of perturbations. Figure 3 illustrates the
stability with respect to large amplitude perturbations.
The initial condition is given by an approximation of the
profiles of the solitary waves u (£),v (£§) by Gaussian func-
tions: u (£)=1—exp(—a&?) for £>0,u (&) =exp(—af?)
—1 for £<0, and v (£)=exp( —a&?), where the parame-
ter a is adjusted to the width of the solitary wave of Fig.
2(b); @ =0.36. We see in Fig. 3(a) that after oscillation
and emission of radiation the field settles down to a sta-
tionary steady state. This state is identified as being a
solitary-wave solution whose parameter f3 is close to the
one of Fig. 2(b) [due to the radiation loss the final intensi-
ty in V is slightly smaller than in the case of Fig. 2(b) and
B=0.93]. Figure 3(b) shows the initial (dotted lines) and
the final steady-state (solid lines) intensity profiles of both
polarization components. This result illustrates the
robust nature of the vector solitary waves which originate
from the dark NLS soliton bifurcation associated with
the fundamental mode of the CPM-induced waveguide.

To illustrate the importance of the bifurcation of the
circularly polarized dark NLS soliton we have performed
the numerical simulation of the propagation of the dark
soliton through an amplifier. The situation is idealized
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FIG. 3. Numerical simulation of the propagation of a per-
turbed solitary wave of the new solution branch. The initial
field envelopes are given in the text. (a) Contour plot of the in-
tensity | U (£,z)|? (note that in order to avoid reflection of the ra-
diation on the edges of the numerical window, broad radiation
damping regions have been introduced at each extremity of the
window). (b) Initial (dotted lines) and final (solid lines) intensity
profiles of both polarization components.

by considering a selective amplification of one circular
polarization component only (we do not discuss here the
different possible ways to get such a feature in practice).
We simply assume that the component U of the dark soli-
ton is not affected by the amplifier and that the com-
ponent V undergoes adiabatic amplification. The initial
condition corresponds to a dark NLS soliton for the field
U and a small amplitude Gaussian envelope centered on
the soliton for the polarization component V. The inten-
sity of the initial Gaussian beam (or pulse) is one-tenth of
the dark soliton intensity. Figure 4 shows the evolution
of the intensity profiles of both fields during propagation.
We see that, while the intensity in V increases, the dark
soliton broadens and exhibits a flat region of zero intensi-
ty around the origin £=0. The intensity in V saturates
when it approaches unity and after z~250 the effect of
amplification only results in a broadening of the field
profile. As a result, the intensity profiles in both polariza-
tion components acquire a square shape and two distinct
pairs of kink waves are formed. In fact, this scenario
reproduces the evolution of the solitary-wave solutions
along the bifurcation branch studied above (compare Fig.
4 with Fig. 2). This simulation also confirms the stability
of these solitary waves.

Let us now study the kink solitary waves observed in
the limit B— a of the new solitary-wave solution branch.
Their existence can be easily explained by means of an
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FIG. 4. Evolution of the intensity profiles, |U|? (solid line)
and |V|? (dotted line), obtained when the polarization com-
ponent ¥V is adiabatically amplified. The initial conditions are
described in the text. We clearly verify the formation of the soli-
tary waves of the new solution branch of Figs. 1 and 2.

analysis of the potential V(u,v). In Fig. 5 we show a con-
tour plot of V(u,v) in the particular case where B=a and
o =2. The separatrices are the trajectories that connect
pairs of saddle points or maxima of this potential. The
thick solid lines in Fig. 5 connect opposite maxima. They
naturally correspond to the circularly polarized dark soli-
tons. The dashed trajectories in Fig. 5 connect opposite
saddle points. They correspond to the linearly polarized
dark solitons ¥ =tv=V'1/(1+0c)tanh(£) easily derived
from Eq. (7) when setting S=a=1 and ¥ =xv. The dot-
ted lines in Fig. 5 show the four separatrices that connect
adjacent maxima of the potential V. They have been cal-
culated numerically from Eq. (7) which is in general
nonintegrable [12]. The solitary-wave envelopes u(§)
and v (§) corresponding to the separatrix of the first qua-
drant (u,v >0) are shown in Fig. 6(a) (the envelopes of

FIG. 5. Contour plot of the potential YV in the (u,v) plane in
the limiting case where B=a =1 [the positions of the maxima of
%V are (+1,0) and (0,%1)]. The solid and dashed lines show the
separatrices of the circularly and linearly polarized NLS dark
solitons, respectively. The dotted lines connect the four adja-
cent maxima of the potential. They are the separatrices of the
polarization domain walls.
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FIG. 6. (a) Circular polarization envelopes u and v of the po-
larization domain wall. (b) Total intensity profile I(£) and ellip-
ticity degree g (&) of the polarization domain wall.
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the separatrices of the other quadrants only differ by
changes of the signs of ¥ and v). We clearly recognize the
kink shape of the waves of Fig. 2(d). As illustrated in
Fig. 6(b), the total intensity profile, I (£)=u(&)*+v(£)?,
consists of a dark pulse inscribed onto a constant back-
ground. In Fig. 6(b) we also plotted the ellipticity degree
of the total field, ¢ =(u —v)/(u +v). The values g =+1
and —1 correspond to circular polarization states of op-
posite handedness, while g =0 corresponds to a linear po-
larization state. We see that the bound kink solitary
waves u and v form a localized structure consisting of a
dip in a constant intensity background accompanied by a
progressive inversion of the ellipticity of the field. Since
this localized structure connects two domains of orthogo-
nal stable eigenpolarizations of the Kerr medium [16] it
can be called a polarization domain wall. Let us note,
finally, that the existence of such polarization domain
walls is closely related to the tensor character of the Kerr
nonlinearity. It is, in fact, easy to see from Eq. (8) that
the potential YV possesses maxima on the u and v axes
only if 0 > 1 (i.e., ¥{33,7°0). The o dependence of V' indi-
cates that, for a given intensity, the smaller o the broader
the domain walls. In the limit o — 1 their width becomes
infinite.

We have checked the propagation stability of the po-
larization domain walls by numerical simulations of Eq.
(1). As for the compound solitary waves studied above,
we have verified their stability with respect to large per-
turbations. Figure 7 illustrates a quite drastic stability
test. It shows, in the form of a contour plot of the inten-
sity of the field U, the collision of a polarization domain
wall (located in £=0) with a gray soliton. The general
form of the gray soliton solution of the NLS equation is
ug{cosg tanh[n(§—Qz)]—ising} where Q=|uy|sing
and 7= |ug|cos¢ [15]. In order to match the fields of the
gray soliton and the polarization domain wall we have to
choose uy=exp(i¢) (the amplitude of the domain wall is
real and equal to unity). For the example of Fig. 7 the
transverse velocity Q=sin¢ of the gray soliton is deter-
mined by the value ¢ =1, which corresponds to a total
phase change of #—2¢=0.927 across the gray soliton
width. This represents a perturbation of almost twice the
amplitude of the domain wall itself. We see, however,
that this large perturbation does not affect the domain
wall. The grey soliton simply bounces back during the
collision and the shape and trajectory of the domain wall
remain almost unchanged. Analogous results, obtained
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FIG. 7. Numerical simulation of the collision between a gray
soliton and a polarization domain wall. The graph shows the
contour lines of the intensity profile |U(£,z)|2. The gray soliton
is introduced in the field U and its phase and amplitudes are ad-
justed to match the field of the polarization domain wall of am-
plitude equal to unity [see Fig. 6(a)]. The phase parameter of
the gray soliton is ¢= 1.

with other types of perturbations, confirmed this robust
solitonlike nature of the polarization domain walls.

To a certain extent these solitary waves are qualitative-
ly similar to the polarization domain walls studied by
Zakharov and Mikhailov in Ref. [22]. In that case, how-
ever, the localized structures result from the nonlinear in-
teraction between two counterpropagating beams of or-
thogonal polarizations in a dispersionless Kerr material.
In fact, the localized structures of Ref. [22] separate or-
thogonal eigenpolarizations of systems of counterpro-
pagating waves. Such polarization eigenstates are dis-
cussed in detail in Ref. [23]. In our case the localized
structures separate orthogonal eigenpolarizations of sin-
gle wave systems [16] (here, since we restricted our
analysis to isotropic media, these eigenpolarizations are
the linear and the circular polarization states). Of course,
the physical situation as well as the mathematical model
considered in Ref. [22] have no connection with the
present case and the similarity is limited to the simple
fact that both situations involve localized structures
separating uniform eigenpolarization domains in a Kerr
material. To be more precise and to differentiate the vec-
tor kink solitary waves considered here from the solitary
waves of Ref. [22], one should call them “diffractive” or
“dispersive” polarization domain walls depending on
whether we consider the spatial or the temporal domain.

An interesting parallel can also be drawn from a topo-
logical point of view between the polarization domain
walls considered here and a new class of localized struc-
tures in discrete models of solids recently reported in the
literature [24,25]. In this latter case the localized struc-
tures separate domains of symmetric lattice vibration
eigenmodes.

The solitary waves u and v of the first bifurcation
branch represented in Fig. 2 can now be viewed as bound
states of polarization domain walls. We see in Fig. 1(a)
that, in the limit B— a, the separatrix trajectory tends to
the two separatrices of the domain walls of the first and
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(b)
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FIG. 8. (a) Two separatrix trajectories of the second bifurca-
tion branch, the values of B corresponding to the dotted and
solid lines are B=1.6 and B=1.002, respectively. (b) The corre-
sponding bifurcation diagram, and (c) and (d) the envelopes u
and v of the separatrices shown in (a).

second quadrants shown in Fig. 5. At this stage the total
field is then composed of two independent (i.e., infinitely
far apart) domain walls. As f3 decreases the domain walls
rapidly come closer to one another and form a stationary
bound state. When S approaches S, the two domain
walls coalesce and in the limit =/, they finally form a
simple dark NLS soliton.

The second bifurcation revealed by the solution (12b) is
more complex. It occurs at f=B,=1.84a and since the
corresponding guided mode y, is antisymmetric it does
not involve a change of the symmetry of the total field.
Figure 8 shows two examples of separatrix trajectories,
the corresponding solitary-wave envelopes as well as the
bifurcation diagram (v, now denotes the maximum value
of the amplitude v). Similarly to the first bifurcation, the
profile of u flattens around the origin. Here this process
is accompanied by the growth of two 7 out-of-phase
pulses in v. As a result, when 8 approaches a the field
distribution is composed of one circularly polarized NLS
dark soliton surrounded by two identical polarization
domain walls [the trajectory being close to the domain
wall separatrices of the first and third quadrants as shown
in Fig. 8(a)].

These solutions were also proven to be stable in propa-
gation. In Figs. 9(a) and 9(b) we show the example of a
perturbed solitary wave close to the bifurcation. The ini-
tial condition for the field U is the dark NLS soliton
whereas the initial envelope in V is given by
v(€)=a&exp(—bE?) where a and b are chosen to ap-
proach the amplitude and width of a solitary-wave solu-
tion (@ =0.1,b =0.5). As in the case of Fig. 3, we ob-
serve a reshaping of the dark soliton accompanied by ra-
diation and damped oscillations. Both fields U and ¥V
rapidly settle down to a steady state identified as being

4517
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FIG. 9. Numerical simulation of the propagation of a per-
turbed solitary wave of the second solution branch. The initial
field envelopes are given in the text. (a) Contour plot of the in-
tensity |U(&,z)|%. (b) Initial (dotted lines) and final (solid lines)
intensity profiles of the polarization component V.

the solitary-wave solution corresponding to the parame-
ter B=~1.83.

In conclusion, we have shown analytically the ex-
istence of bifurcations of the dark soliton solutions to the
coupled NLS equations. These bifurcations have been ex-
plained by means of a simple physical reasoning based on
linear optical waveguide theory. The solitary-wave solu-
tions of the corresponding bifurcation branches have
been studied numerically. We showed that, far from the
bifurcation points, these solutions tend to composite
states of independent pairs of kink solitary waves. These
waves constitute localized structures separating regions
of different eigenpolarizations of the Kerr medium and
can therefore be viewed as polarization domain walls.
The stability of the polarization domain walls as well as
of the compound solitary waves has been investigated by
means of numerical simulations of the full dynamical
model. All the solutions revealed by the present bifurca-
tions of the dark NLS soliton were proven to be stable.
In particular, we showed that the polarization domain
walls exhibit a robust solitonlike nature which allows us
to consider them as a novel type of fundamental vector
solitary waves of Kerr media.
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acknowledged. This work has been supported by the
Australian Photonics Cooperative Research Centre.
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